\(\int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx\) [290]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 153 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=-\frac {2 a^2 \arctan \left (\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {2 a^2 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 \tan (c+d x)}{d \sqrt {e \csc (c+d x)}} \]

[Out]

-2*a^2*arctan(sin(d*x+c)^(1/2))/d/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)+2*a^2*arctanh(sin(d*x+c)^(1/2))/d/(e*c
sc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)-a^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(
cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))/d/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)+a^2*tan(d*x+c)/d/(e*csc(d*x+c))^(1/
2)

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3963, 3957, 2952, 2719, 2644, 335, 304, 209, 212, 2651} \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=-\frac {2 a^2 \arctan \left (\sqrt {\sin (c+d x)}\right )}{d \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}+\frac {2 a^2 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )}{d \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}+\frac {a^2 \tan (c+d x)}{d \sqrt {e \csc (c+d x)}}+\frac {a^2 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{d \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \]

[In]

Int[(a + a*Sec[c + d*x])^2/Sqrt[e*Csc[c + d*x]],x]

[Out]

(-2*a^2*ArcTan[Sqrt[Sin[c + d*x]]])/(d*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x]]) + (2*a^2*ArcTanh[Sqrt[Sin[c +
d*x]]])/(d*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x]]) + (a^2*EllipticE[(c - Pi/2 + d*x)/2, 2])/(d*Sqrt[e*Csc[c +
 d*x]]*Sqrt[Sin[c + d*x]]) + (a^2*Tan[c + d*x])/(d*Sqrt[e*Csc[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2651

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*Sin[e +
f*x])^(n + 1))*((a*Cos[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Sin[e +
 f*x])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3963

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (a+a \sec (c+d x))^2 \sqrt {\sin (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {\int (-a-a \cos (c+d x))^2 \sec ^2(c+d x) \sqrt {\sin (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {\int \left (a^2 \sqrt {\sin (c+d x)}+2 a^2 \sec (c+d x) \sqrt {\sin (c+d x)}+a^2 \sec ^2(c+d x) \sqrt {\sin (c+d x)}\right ) \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {a^2 \int \sqrt {\sin (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 \int \sec ^2(c+d x) \sqrt {\sin (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {\left (2 a^2\right ) \int \sec (c+d x) \sqrt {\sin (c+d x)} \, dx}{\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {2 a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 \tan (c+d x)}{d \sqrt {e \csc (c+d x)}}-\frac {a^2 \int \sqrt {\sin (c+d x)} \, dx}{2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{1-x^2} \, dx,x,\sin (c+d x)\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 \tan (c+d x)}{d \sqrt {e \csc (c+d x)}}+\frac {\left (4 a^2\right ) \text {Subst}\left (\int \frac {x^2}{1-x^4} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = \frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 \tan (c+d x)}{d \sqrt {e \csc (c+d x)}}+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \\ & = -\frac {2 a^2 \arctan \left (\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {2 a^2 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{d \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {a^2 \tan (c+d x)}{d \sqrt {e \csc (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 18.33 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.88 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=-\frac {\left (1+\cos \left (2 \left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )^2 \cos (c+d x) \left (-1+\csc ^2(c+d x)\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (-\arctan \left (\sqrt {\csc (c+d x)}\right )-\text {arctanh}\left (\sqrt {\csc (c+d x)}\right )-\frac {2 \sqrt {\csc (c+d x)} \sqrt {1-\csc ^2(c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},\csc ^2(c+d x)\right )}{3 \sqrt {1-\sin ^2(c+d x)}}+\frac {\sqrt {\csc (c+d x)} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {3}{2},\frac {3}{4},\csc ^2(c+d x)\right ) \sqrt {1-\sin ^2(c+d x)}}{\sqrt {1-\csc ^2(c+d x)}}\right )}{2 d \left (1+\cos \left (2 \left (\frac {c}{2}+\frac {1}{2} \left (-c+\csc ^{-1}(\csc (c+d x))\right )\right )\right )\right )^2 \csc ^{\frac {3}{2}}(c+d x) \sqrt {e \csc (c+d x)} \sqrt {1-\sin ^2(c+d x)}} \]

[In]

Integrate[(a + a*Sec[c + d*x])^2/Sqrt[e*Csc[c + d*x]],x]

[Out]

-1/2*((1 + Cos[2*(c/2 + (d*x)/2)])^2*Cos[c + d*x]*(-1 + Csc[c + d*x]^2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*
x])^2*(-ArcTan[Sqrt[Csc[c + d*x]]] - ArcTanh[Sqrt[Csc[c + d*x]]] - (2*Sqrt[Csc[c + d*x]]*Sqrt[1 - Csc[c + d*x]
^2]*Hypergeometric2F1[3/4, 3/2, 7/4, Csc[c + d*x]^2])/(3*Sqrt[1 - Sin[c + d*x]^2]) + (Sqrt[Csc[c + d*x]]*Hyper
geometric2F1[-1/4, 3/2, 3/4, Csc[c + d*x]^2]*Sqrt[1 - Sin[c + d*x]^2])/Sqrt[1 - Csc[c + d*x]^2]))/(d*(1 + Cos[
2*(c/2 + (-c + ArcCsc[Csc[c + d*x]])/2)])^2*Csc[c + d*x]^(3/2)*Sqrt[e*Csc[c + d*x]]*Sqrt[1 - Sin[c + d*x]^2])

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 13.83 (sec) , antiderivative size = 996, normalized size of antiderivative = 6.51

method result size
parts \(\text {Expression too large to display}\) \(996\)
default \(\text {Expression too large to display}\) \(1290\)

[In]

int((a+a*sec(d*x+c))^2/(e*csc(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-a^2/d*2^(1/2)*(2*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-cs
c(d*x+c)))^(1/2)*EllipticE((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)-(-I*(I-cot(d*x+c)+csc(
d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((-I*(I-cot(d*
x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)+2*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d
*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticE((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))-(
-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*El
lipticF((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))+2^(1/2)*cos(d*x+c)-2^(1/2))/(e*csc(d*x+c))^(1/2)*csc
(d*x+c)-1/2*a^2/d*2^(1/2)/(e*csc(d*x+c))^(1/2)*(-2*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(
d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticE((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*
cot(d*x+c)+(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c
)))^(1/2)*EllipticF((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*cot(d*x+c)-2*(-I*(I-cot(d*x+c)+csc(d*x+c
)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticE((-I*(I-cot(d*x+c)+
csc(d*x+c)))^(1/2),1/2*2^(1/2))*csc(d*x+c)+(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))
^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))*csc(d*x+
c)+2^(1/2)*csc(d*x+c)-2^(1/2)*sec(d*x+c)*csc(d*x+c))+2*a^2/d*(arctanh((sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(cot
(d*x+c)+csc(d*x+c)))+arctan((sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(cot(d*x+c)+csc(d*x+c))))/(cos(d*x+c)+1)/(e*cs
c(d*x+c))^(1/2)/(sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.42 (sec) , antiderivative size = 698, normalized size of antiderivative = 4.56 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=\left [-\frac {2 \, a^{2} \sqrt {-e} \arctan \left (-\frac {{\left (\cos \left (d x + c\right )^{2} - 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {-e} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, {\left (e \sin \left (d x + c\right ) + e\right )}}\right ) \cos \left (d x + c\right ) + a^{2} \sqrt {-e} \cos \left (d x + c\right ) \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} + 8 \, {\left (\cos \left (d x + c\right )^{4} - 9 \, \cos \left (d x + c\right )^{2} + {\left (7 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) + 8\right )} \sqrt {-e} \sqrt {\frac {e}{\sin \left (d x + c\right )}} + 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) - 2 \, a^{2} \sqrt {2 i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 2 \, a^{2} \sqrt {-2 i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 4 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, d e \cos \left (d x + c\right )}, \frac {2 \, a^{2} \sqrt {e} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} + 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {e} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, {\left (e \sin \left (d x + c\right ) - e\right )}}\right ) \cos \left (d x + c\right ) + a^{2} \sqrt {e} \cos \left (d x + c\right ) \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} + 8 \, {\left (\cos \left (d x + c\right )^{4} - 9 \, \cos \left (d x + c\right )^{2} - {\left (7 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) + 8\right )} \sqrt {e} \sqrt {\frac {e}{\sin \left (d x + c\right )}} - 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 2 \, a^{2} \sqrt {2 i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 2 \, a^{2} \sqrt {-2 i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 4 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, d e \cos \left (d x + c\right )}\right ] \]

[In]

integrate((a+a*sec(d*x+c))^2/(e*csc(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/4*(2*a^2*sqrt(-e)*arctan(-1/4*(cos(d*x + c)^2 - 6*sin(d*x + c) - 2)*sqrt(-e)*sqrt(e/sin(d*x + c))/(e*sin(d
*x + c) + e))*cos(d*x + c) + a^2*sqrt(-e)*cos(d*x + c)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2 + 8*(cos(d*
x + c)^4 - 9*cos(d*x + c)^2 + (7*cos(d*x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(-e)*sqrt(e/sin(d*x + c)) + 28*(e*c
os(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x
+ c) + 8)) - 2*a^2*sqrt(2*I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*s
in(d*x + c))) - 2*a^2*sqrt(-2*I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) -
 I*sin(d*x + c))) + 4*(a^2*cos(d*x + c)^2 - a^2)*sqrt(e/sin(d*x + c)))/(d*e*cos(d*x + c)), 1/4*(2*a^2*sqrt(e)*
arctan(1/4*(cos(d*x + c)^2 + 6*sin(d*x + c) - 2)*sqrt(e)*sqrt(e/sin(d*x + c))/(e*sin(d*x + c) - e))*cos(d*x +
c) + a^2*sqrt(e)*cos(d*x + c)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2 + 8*(cos(d*x + c)^4 - 9*cos(d*x + c)
^2 - (7*cos(d*x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(e)*sqrt(e/sin(d*x + c)) - 28*(e*cos(d*x + c)^2 - 2*e)*sin(d
*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 2*a^2*sqrt(2*
I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c))) + 2*a^2*sqrt
(-2*I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c))) - 4*(a^2
*cos(d*x + c)^2 - a^2)*sqrt(e/sin(d*x + c)))/(d*e*cos(d*x + c))]

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=a^{2} \left (\int \frac {1}{\sqrt {e \csc {\left (c + d x \right )}}}\, dx + \int \frac {2 \sec {\left (c + d x \right )}}{\sqrt {e \csc {\left (c + d x \right )}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {e \csc {\left (c + d x \right )}}}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))**2/(e*csc(d*x+c))**(1/2),x)

[Out]

a**2*(Integral(1/sqrt(e*csc(c + d*x)), x) + Integral(2*sec(c + d*x)/sqrt(e*csc(c + d*x)), x) + Integral(sec(c
+ d*x)**2/sqrt(e*csc(c + d*x)), x))

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {e \csc \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2/(e*csc(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2/sqrt(e*csc(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {e \csc \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2/(e*csc(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2/sqrt(e*csc(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {e \csc (c+d x)}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{\sqrt {\frac {e}{\sin \left (c+d\,x\right )}}} \,d x \]

[In]

int((a + a/cos(c + d*x))^2/(e/sin(c + d*x))^(1/2),x)

[Out]

int((a + a/cos(c + d*x))^2/(e/sin(c + d*x))^(1/2), x)